MO degradation by Ag–Ag2O/g-C3N4 composites under visible-light irradation

نویسندگان

  • Xin Wang
  • Jia Yan
  • Haiyan Ji
  • Zhigang Chen
  • Yuanguo Xu
  • Liying Huang
  • Qi Zhang
  • Yanhua Song
  • Hui Xu
  • Huaming Li
چکیده

The paper demonstrated the synthesis of Ag-Ag2O/g-C3N4 nanoparticles via a simple liquid phase synthesis path and a facile calcination method. The synthesized Ag-Ag2O/g-C3N4 composites were well characterized by various analytical techniques, such as X-ray diffraction, Fourier transform infrared (FT-IR), X-ray photoemission spectroscopy, transmission electron microscopy, scanning electron microscopy, high resolution transmission electron microscopy, the UV-Vis diffuse-reflectance spectra and transient photocurrent. From the structure and surface characterization, it indicated that Ag-Ag2O/g-C3N4 composites were formed by an effective covering of g-C3N4 with Ag-Ag2O. The results revealed that the 50 wt% nanoparticle had a great effection on the degradation of the methyl orange (MO), which was almost 7.5 times as high as that of g-C3N4. Based on the experimental results, the possible photocatalytic mechanism with photogenerated holes as the main active species was presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach.

A straightforward approach is developed for fabrication of a visible-light-driven Ag/g-C3N4 catalyst. Morphological observation shows that the g-C3N4 sheets are decorated with highly dispersed Ag nanoparticles having an average size of 5.6 nm. The photocatalytic activity measurements demonstrate that the photocatalytic degradation rates of methyl orange (MO), methylene blue (MB), and neutral da...

متن کامل

Hybridization of Cd0.2Zn0.8S with g-C3N4 nanosheets: a visible-light-driven photocatalyst for H2 evolution from water and degradation of organic pollutants.

Novel visible-light-driven Cd0.2Zn0.8S/g-C3N4 inorganic-organic composite photocatalysts were synthesized by a facile hydrothermal method. The prepared Cd0.2Zn0.8S/g-C3N4 composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron m...

متن کامل

Synthesis of Ag3PO4/G-C3N4 Composite with Enhanced Photocatalytic Performance for the Photodegradation of Diclofenac under Visible Light Irradiation

A new visible-light-driven heterojunction Ag3PO4/g-C3N4 was prepared by a simple deposition-precipitation method for the degradation analysis of diclofenac (DCF), a model drug component, under visible-light irradiation. The heterojunction photocatalysts were characterized by a suite of tools. The results revealed that the introduction of Ag3PO4 on the surface of g-C3N4 greatly promoted its stab...

متن کامل

Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles.

As a potential visible-light photocatalyst, the photocatalytic performance of the bulk g-C3N4 synthesized by heating melamine (denote as g-C3N4-M) is limited due to its low specific surface area and the high recombination rate of the photo-induced electron-hole pair. In this paper, a novel g-C3N4-M nanosheet (g-C3N4-MN) obtained from the bulk g-C3N4-M through a thermal exploitation method is em...

متن کامل

Visible Light-Driven Photocatalytic Performance of N-Doped ZnO/g-C3N4 Nanocomposites

N-doped ZnO/g-C3N4 composites have been successfully prepared via a facile and cost-effective sol-gel method. The nanocomposites were systematically characterized by XRD, FE-SEM, HRTEM, FT-IR, XPS, and UV-vis DRS. The results indicated that compared with the pure N-doped ZnO, the absorption edge of binary N-doped ZnO/g-C3N4 shifted to a lower energy with increasing the visible-light absorption ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016